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SECTION 1 

INTRODUCTION 

Waves are influenced by the constitutive properties of the material 

in which they propagate. The effects of constitutive properties on spherical 

wave propagation is of special interest in calculating the effects of under- 

ground nuclear explosions. Recent efforts using numerical methods to predict 

the effects of the PI LEDRIVER event have focussed attention on the role of 

mathematical models of constitutive properties. The purpose of the present 

paper is to illustrate how various assumptions about constitutive properties 

affect the calculated wave propagation. 

In the present analysis, the finite element method is adapted to 

spherical geometry. A mathematical model is derived for Cedar City Tonalite 

based on laboratory measurements. The mode) contains a bulk modulus which 

depends on the current density, a shear modulus, a yield criterion and a rule 

of plastic flow. The Tonalite is considered to be ar; inf'nite medium surround- 

ing a cavity which contains a sphere of chemical explosive. Detonation of the 

explosive is represented by applying a pressure to the surface of the cavity 

which varies with time in a manner similar to that measured by Physics Inter- 

nationa) Company (Reference 1). The peak pressure used in the present calcu- 

lations is 31*5 kilobars. 

The results of the calculations are presented as stress/time histories 

and stress/strain relations at various ranges and as rates of attenuation of 

the peak radial stress. The effects of varying these properties are studied 

by comparing stress/time histories and stress/strain relations at various 

ranges and as rates of attenuation of the peak radial stress  The primary 

comparisons are made among cases where the radial stress applied to the cavity 

surface and hence the impulse is invariar.... 
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SECTION 2 

FINITE ELEMENT METHOD 

The application of the finite element method to problems in 

continuum mechanics has been thoroughly discussed by previous writers 

(References 2-4). Hence, only a few subjects pertaining specifically to the 

present adaptation of the finite element method are discussed below. 

The incremental equation of dynamic equilibrium is 

[m]{6u'} + [c]{6Ü} + [K]{6u} - {fiP} (I) 

in which    [m] * Global mass matrix 

[c] » Global damping matrix 

[K] ■ Global (tangent) stiffness matrix 

{6u}, {6u}, {6u} « Increments of acceleration, velocity, and displacement 

{6P} ■ Increment of load 

The global stiffness matrix is assembled from element stiffness 

matrices [k]. For a typical element (see Figure 2-1) 

[k] *  ([A]-1!1 |  [B]T[D][B]dV[A]_1 (2) 
J\lo) 

where [A]   ■ A transformation matrix relating the generalized displacements 

of the finite element theory to the physical radial displace- 

ment 

[B] ■ Strain/displacement transformation matrix 

[D] « Matrix of tangent stress/strain moduli relating incremental 

stress to incremental strain 

mam mi BLAMK 
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FIGURE 2-1.    SPHERICAL ELEMENT DEFINED BY 

I      AND    JTH    NODAL SURFACES 

In the present case 
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(3) 

where    r.,   r.    ■    Radii of the  i      and j      nodal  surfaces 

[A]        expresses the displacement    u    between the  i      and j      nodal 

surfaces by the following equation: 

(      J 
w 

The displacement function, Equation 2-k,  satisfies the elasto-static 

solution of a hollow sphere subjected to internal and/or external pressure. 

I* 
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r   3r 

e  ■ c  ■ —• 
8    %    r 

Performing the indicated differentiation shows that 

f      1 
e 

r 

69 
■   » 

IsJ 

-2r 

[A] 
-1 1 "« 

(5a) 

(5b,c) 

(6) 

Hence, 

[•] 

-2r J 

r"3 

-3 

(7) 

Within an element, strain varies as 1/r . 

The global mass matrix is based on the assumption of lumped mass 

at nodal surfaces. Each element contributes half of its mass to its two 

end nodal surfaces as illustrated in Figure 2-2. In the problems to be dis- 

cussed here, the global damping matrix is assumed to be zero. 

The method by which the displace- 

ment increment at t + 6t is obtained from 
o 

the known solution at t  is based on the 
o 

assumption of linear acceleration during the 

time step. The method is based on work by 

Wilson (Reference 3) and Felippa (Refer- 

ence 5). The solution is obtained in two 

FIGURE 2-2. LUMPED MASS 

APPROXIMATION 
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steps as illustrated in Figure 2-3.  In the first step, the solution at 

t + 5t/2 is estimated using the known tangent stiffness at t . This is done 
o o 
by obtaining a temporary solution at t ♦ 6t (1 in the Figure) and then inter- 

o 
poiating to t + St/2 (2 in the Figure). The solution at the end of the first 

pass Is used to evaluate the stiffness matrix [K] at t + 6t/2. The first 
o 

pass solution is then discarded. The second pass is performed using [K] at 

tQ + 6t/2 to obtain a temporary solution at tQ + 26t (3 in the Figure). The 

final result is obtained by interpolating between t and t + 26t to find the 

incremental displacement at t + 6t {k  in the Figure). 

2ND PASS 
FOfOM*D USING 

MOKUTKM 

mroipout 

KMPGtMY 
SOLUTION: 
1MB PASS 

FIGURE 2-3.  INTEGRATION TECHNIQUE 
FOR PRESENT FINITE ELEMENT METHOD 

This integration procedure requires the equations of motion to be 

solved twice during every time step and therefore appears to be more time- 

consuming than necessary. However, the materials of interest exhibit a large 

difference in stiffness between loading and unloading, and it was feared that 

small numerical errors might lead to large changes in stiffness and to insta- 

bility. Hence, the conservative procedure described above was adopted. The 

present calculations show that this procedure is stable. However, some recent 

theoretical work at AJA seems to indicate that a one pass method would be 

just as effective as the present two pass method. Further work is required 

to confi rm this. 
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SECTION 3 

MATHEMATICAL MODEL OF MATERIAL PROPERTIES 

The mathematical model which is used in the present work has the 

following basic features: 

a. Bulk modulus (B) may be a function of the excess compression 

p 
u ■ p - 1, where p » current density and PQ - initial 

o 
density. 

b. Shear modulus (G) may be a function of the current state of 

stress.  In the present examples it is assumed to be constant. 

c. Yield criterion may be a function of the first stress invariant 

(J.) and of the second invariant of stress dcviator (J£) 

(Reference 6). 

d. Work-hardening or strain-hardening rules prescribe how the 

yield criterion may vary as a function of plastic work or 

plastic strain.  In the present examples, hardening is assumed 

to be zero and the initial yield criterion is a permanent 

property of the material (Reference 6). 

e. Flow rules prescribe how changes in plastic strain are related 

to changes in stress when the yield criterion is satisfied. 

Two flow rules, the plastic potential (Reference 7) and a vers- 

ion of the Prandtl-Reuss rule (Reference 8), are considered. 

This mathematical model must be expressed as a matrix of coefficients 

JO relating stress increments jdo to total strain increments dej . 

»da' - M idei (8) pa, - p| pj 

The [D matrix has two purposes in the finite element scheme described above. 

One is in formulating the element stiffness matrix Ik , Equation 2. The 
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second purpose is in determining the stress increments in the element between 

the 1th and jth node from the incremental nodal displacements as indicated 

by Equation 9. 

du,) 
{do}- [D]    [B]    [A]"1 YJ (9) 

The starting point in deriving [D] is Hooke's law for small strains 

which relates 'he incremental stress tensor, dOj., to the elastic component 

of the strain tensor, de... 

^ij - xdckk6ij + 2GKj) (10) 

where   X   «   Lame's parameter, B - *■ G 

If the state of stress does not satisfy the yield criterion,  the elastic 

strain increment and the total strain increment are equal and    [D]    is based 

on Equation 10.    However,  if the yield criterion is satisfied, further com- 

putations are necessary to obtain    [D]. 

Defining the elastic strain increment as  the difference between the 
p 

plastic strain increment,  de.., and the total  strain  increment, dc.., 

Equation 10 may be rewritten as  follows: 

do,.    -    x/de..   - de[\ | 6.. + 2G(de. .  - dzP. .) 
lj \    kk kk/    ij \    ij IJ/ 

(11) 

The flow rule is used to express    de.,    in  terms of  the yield criterion and 

components of the stress or stress devlator tensor 

. P de.j 3f 
3o. 

ij 
(plastic potential) (12a) 

de 
ij 

3f 

ij 
(present version of 
Prandtl-Reuss  flow rule) 

(12b) 
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For the sake of simplicity in the following derivation, both Equations 12a, b 

are expressed as 

de,. ■ Af.. 03) 

in the subsequent applications of the mathematical model it is made clear which 

flow rule is being used. 

From the assumption of no work or strain hardening, it follows that 

there is no change in the yield function. The mathematical statement of this 

assumption is 

4(f(a..))    = 0 (14a) 

or 

3f  A T da.. 
3a..  ij 
U 

f.. do.. 
U  ij 

(14b) 

Substituting Equation (11) into Equation (14b) and making use of Equation (13) 

leads to the following equation. 

A(de.. - Af..) 6. .f.. + 2G(de.. - Af..)f,. » 0 
kk    kk  ij ij        IJ     IJ  ij 

The scalar quantity A may be found by rearranging Equation 15. 

A(dekk)(fu) +2G(d£ >(f ) 

(15) 

06) 

Making use of Equation (16) in Equation (13) and substituting the result into 

Equation (11), the stress increment is expressed in terms of the total strain 

increment and the total stresses. This is the desired result. 

The remaining task is to factor out coefficients in the [D] matrix, 

which is given on the following page. 
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to]   - 

X * 2G - 
(XF ♦ 2Ct )Z (XF ♦ 2GfJ(AF ♦ 2Gf ) 

r < 5 L. x 
1?T 2Gx 

Symmetric»! 

>  ♦ 2G 

T?T 26x 

(AF ♦ 2GfgV 

XF2 ♦ 26K 

(AF ♦ 2Gft)(AF ♦ 2Gff) 

XF' ♦ 2Gx 

(XF ♦ 2Gf9)(XF ♦ 2Gft) 

X ♦ 2G 

VF2* 2Gx 

(XF ♦ 2Gf )2 

XF2 ♦ 2Gx 

where 

(17) 

F    -    f    + f    + f 
r       o       * 

f , etc. 
r 

Derivatives of the yield function    f   with respect 

to stress components  (plastic potential  flow rule) or 

stress deviator components  (present version of 

Prandtl-teuss flow rule),     f       indicates differentiation 

with respect to radial  stress or stress deviator component. 

10 



.m-iv-rii       i rJ1jjJ.ll IBt-lMJUI.A .IhWgyttiiPi.pi-lUi., '   -■' -■"■"—     ■."       IWWP 

» V 

AjA R-68J3-777 

SECTION k 

PROPERTIES OF ROCK USED IN FINITE ELEMENT CALCULATIONS 

Specific material properties were derived from a variety of 

laboratory tests on Cedar City Tonalite and NTS granite. Properties of both 

rocks are incorporated into the model, which is intended to represent a 

weathered granite. 

BULK MODULUS 

The mathematical model of bulk modulus is based on hydrostatic 

compression tests in the range 0-37 kilobars (Reference 9, 10). Release 

adiabat data (Reference 11) were also taken into account when deciding that 

hysteresis should be incorporated into the model. The model, which Is 

intended for use only when u  • 1  is positive, is given below. 
Po 

Loading (u >_ u   , the previous maximum p in a particular element) 
■HoX 

B    "    B i* -   (B i» " BJ «*P (—] ult ult        0'      v \\i. J (18) 

Unloading or reloading  (y > u      ) 
max 

- B + (B . - B )/Ü-\ (19) 
u    ult   u h.l x ■" 

and Bu ■ the lesser of t (20) 

Bult 

11 
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The empirical coefficients in these equations are as follows: 

B ._ - 7.6 x 10 psi 
tilt 

• 1.205 x 10 psi 

0.0275 

0.05 

Bulk moduli for typical cycles of loading and unloading are shown in 

Figure 4-1 and the model is compared with experimental data I:;  Figure 4-2, 

0.01  0.02  0.0)  0.04  0.05  0.06   0.07 0.01 

i. MMtt BULK M00ULUS FOB LOADING«» UNLOADING 

0     001   0.0? 0.0) 0.04   0«   0.06  0.07 0.08 

b.  MODEL HYDROSTAT FOB LOADING AND UNLOADING 

FIGURE 4-1. MODEL BULK MODULI AND HYDR0STAT 
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FIGURE 4-2. MODEL BULK MODULUS, HYDROSTAT AND HUG0NI0T COMPARED WITH DATA 
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The model shear modulus Is besed on the slope of deviatoric $ cress/ 

strain curves measured during triaxial compression tests on Cedar City 

Tonalite (Reference 10). The data, which are shown in Figure 4-3 seem to 

indicate that 6 decreases with increasing confining pressure. The trend is 

too weak to Justify a model which is more complicated than G - a constant. 

However, the G which is chosen 

G - 0.69 kb « 10 p«i 

gives more weight to the data at the high pressure end of the range of 

measurements. 

0.3 

0.2 

o 
0.1 

V ■ • * 

 1  
I 

EACH TYPE OF SYMBOL DENOTES ONE 
TRIAXIAL COMPRESS ION TEST (REF10) 

• • 
• • 

♦ *♦** 

PRESENT MODa 

'> • 

0.2 0.4 0.6    0.8 

PRESSURE, Kb 

1.0 1.2 1.4 

YIELD CRITERIA 

FIGURE 4-3. SHEAR MODULUS VERSUS PRESSURE 

The yield criterion, which has tha form 

\ß oJ. - c 

Is based on several types of experimental data. The yield criterion at low 

pressure is based on static, triaxial compression experiments which were 

13 
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conducted on samples whose minimum dimension was 1 to 2 in. Data obtained 

from presawn samples of Nevada Test Site granite (Reference 12) and 

Cedar City Tonalite (Reference 10) and from intact samples of Westerly 

granite (Reference 13) and Cedar City Tonalite (Reference 10) were considered. 

The reason for considering presawn samples, which were sawn through at angles 

of 45-60 deg to the direction of major principal stress, Is to try to take 

into account: preexisting cracks ir the Physics international specimens and 

the faults and joint planes which exist in large rock masses in situ. 

. 

The data on which the yield criterion Is based are shown in 

Figure k-k. 

3.0 

2.5 

2.0 

OL 

t£ 
1.5 

1.0 

0.5 

A INTACT WESTERLY GRANITE. REF 13 
v INTACT TONALITE, REF 10 
■ PRESAWN TONALITE, REF 10 
• PRESAWN NTS GRANITE, REF 12 

.PRESENT YIELD 
^CRITERION 

-448, 050 PS I rJ, 

Jj. 1000 PS I 

FIGURE k-k.    TRIAXIAL COMPRESSION DATA AND PRESENT YIELD CRITERION 
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A lower limit on shear strength in the range of the data is used 

for the yield criterion in the present calculations. The purpose of this is 

to use a physically plausible yield criterion while allowing a maximum amount 

of material to undergo inelastic deformation. The coefficients defining the 

present criterion are as follows. 

Oj - -0.157 

c1 - 1*50 psl 

This criterion is assumed to apply in the following range of mean stress. 

J, 
-1*9,350 psl <. y-   - p 

The criterion implies that the maximum allowable devlatoric stress is zero 

when p - Y~ ■ 1900 psi. The material has a strength under uniaxlal tensile 

stress of 2500 psi, which is too large to be a good respresentatton of 

weathered granite. A preliminary study indicated that the attenuation of 

peak stress and general shape of the compressive phase of the pulse varied 

little as the details of the tensile properties were varied. Hence, the 

present Coulomb yield criterion plus the restriction that the -nean tensile 

stress may never exceed 1900 psl were adopted for simplicity. 

The yield criterion which is assumed to applv in the region 
Ji 
__ ■ p < -li»9,350 psi Is the von Mises type 

<*2 - 0 

c2 - 76,000 psl 

15 
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This criterion is based on the hypothesis that the rock has an ultimate shear 

strength depending on the strength of minerals within grains and is independ- 

ent of friction between grain boundaries. The idea of using a von Mif.es 

yield criterion is further supported by the data in Figure 4-2, whic.i 

indicate that the hugontot is approximately a constant distance equal to 

about 90,000 psi above the hydrostat for u >_ 0.05. This is consistent with 

a value of c2 * 76,000 psi. 

The mean stress at which the transition from Coulomb to von Mises 

yield criterion is made is determined by using the criterion giving the 

minimum allowable yfJl 

yfi - min Vi * ci 

One feature of the model which does not agree with the experimental 

data is the hugoniot elastic limit (HEL in Figure 4-2), defined as the stress 

level at which a wave propagating in the material has more than one character- 

istic speed. Although this definition is somewhat inadequate in that it over- 

looks diffusion, rate effects and compaction at low stress levels, there seems 

to be a distinct stress level in Tonalite where the wave sp?ed alters appreciably. 

This has been reported experimentally at about u  ■ 0.048 or a. ■ -320,000 psi 

(Reference 14). In the present model, it occurs at about u - 0.066 and 

o. ■ -435,000 p.ii. One way to bring this aspect of the model into better 

agreement with the experimental data is to increase the shear modulus to 

G • 1.5 x 10° psi. This would also bring the shear modulus into better 

agreement with low pressure data, and in calculations it would indicate more 

inelastic deformation on loading than does the present model. The overall 

effect on the present series of calculations of making such a change would 

probably be small, however. 

16 
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It is assumed that the initial density of the material 

gm/en»3 - 0.000238 lb sec2/in.*. This vi 

number of samples taken from the Cedar City site. 

p   - 2.55 gm/csT»3 - 0.000238 lb •sec2/in.i|.    This value is representative of a 

PREVIOUS WORK 

The mathematical model of weathered granite used here is adapted 

from previous work reported in Reference 15. 

17 
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SECTION 5 

NUMERICAL RESULTS 

Calculations were performed In which the cavity size and pressure/ 

time history applied to the surface of the cavity are comparable to those in 

physical experiments conducted by Physics International Company, Reference 1. 

The finite-element grid used in the present calculations is shown in Figure 5-1a. 

The pressure/time history for the present calculation, Figure 5*1» is adapted 

from a radial-stress/time history which was measured in a spherical wave 

experiment on Cedar City Tonalite where the wave was generated by detonating 

chemical explosive. 

The purpose cf using the fine mesh Illustrated in Figure 5-1a is to 

try to maintain the correct rise time of the wave. The rise time, as indicated 

by measurements in the physical experiment which are reliable to the nearest 

0.1 x 10  sec is about 0.7 x 10  sec. As should be expected in a numerical 

solution method of the type used here, the rise time increases to 2.0 

- 3-0 x 10  sec by the time the wave has propagated a distance equal to 

5 x r , where r  is the cavity radius. A somewhat greater increase In rise 
o        o 

time is noticed in the physical experiment, which is probably due either to 

viscous properties of the material or to dispersion caused by small-scale 

inhomogeneities in the rock structure. 

The reason for trying to represent the correct rise time is that, 

in the vicinity of the cavity, the rise time influences the rate of attenuation 

of peak radial stress and particle velocity. This point is discussed in 

detail in Appendix A. The rate of attenuation is a parameter of practical 

interest and is used in the present analysis as one index of the effect of 

changing a particular material property. Hence it is important for the rise 

time in the numerical calculations to be a physically meaningful quantity and 

for it to be the same from one computation to the next. Hence, a conservative 
-8 

integration time step fit * 5 x 10  sec  and a fine finite-element mesh were 

used. 

PRECEDING PAfiE BLANK 
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FIGURE 5-1.    HESh SIZE AND LOADING USED IN PRESENT CALCULATIONS 
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The main results of the present study were obtained from a series of 

seven calculations which are described in the following table. 

Case Description 

1 Linear elastic (no yield condition imposed); 

B - Bo - 1.2 x I0
6 psi; G + 1 x I06 psi 

2 Variable modulus (no yield condition imposed); 

B defined by Equations 18-20; 6 - I x 106 psi 

3 Variable modulus as in Case 2 with von Hises     ♦ 

yield criterion (a - 0, c • 76125 psi) 

A Variable modulus as in Case 2 with Coulomb 

yield criterion (a - »0.167, c - 1*50 psi) at 

p > -14.5 kb and von Hises criterion (o ■ 0, 

c - 76i25 psi) at p < -]k.S  kb. Plastic 

Potential flow rule is used. 

5 Same as Case k, except that Prandtl-Reuss 

flow rule is used. 

6 Same as Case *>, except that impulse is  increased 

by a factor of 2. 

7 Same as Case 2, except that impulse is  increased 

by a factor of 2. 

STRESS/TIME HISTORIES 

The radial  and circumferential-stress/time histories at various  ranges 

from the cavity wall  are shown for each case in Figures 5-2 to 5"5.    Compressive 

stresses are defined to be negative.    The  time duration of each calculation  is 

35 x 10    sec, which allows a fairly complete picture of the stress pulse  in  the 

range    r/r    »1-*. o 
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FIGURE 5-2.  STRESS/TIME HISTORIES, CASES 1 AND 2 
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FIGURE 5-3- STRESS/TIME HISTORIES, CASES 3 AND k 
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FIGURE 5-1». STRESS/TIME HISTORIES, CASE 5 
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HOOP TENSILE STRESS 

The hoop stresses (oQ, aA are  tensile or compress Ive according to 

the sense of the elastic component of hoop strain. In spherical wjves, the 

hoop strains (efl, e*) tend to become tensile due to outward radial displacement 

(u) according to the following equation 

e6 " e* " u/r 

Since in the present calculations the rise time of radial stress and particle 

velocity Is very short, u-0 at the time of peak a  . The state of strain 

at this time is approximately uilaxial compression In the redirection, and 

hence compressive ofl, a, are induced by Poisson's ratio effects just as they 

are in plane wave propagation. This behavior is governed by the material 

properties and wave shape used in the present calculations. The hoop stress 

would be initially tensile if Poisson's ratio were assumed to be zero, and the 

amplitude and duration of the compressive hoop stress would be reduced If the 

rise time were lengthened. 

Following an initial compressive phase, aa, a.    become tensile in 

the linear elastic and variable modulus cases (Cases 1 and 2).  In Case 3, 

a  , a. at r/r ■ 1.015 are influenced by the development of plastic deforma- 

tion, during which the effective Poisson's ratio is 0.5. The component of hoop 

strain due to Poisson's ratio effects is thus larger than in Cases 1 and 2, and 

outward displacement must be correspondingly larger before a., a.    can become 

tensile. This accounts for the occurrance of tensile stresses at about t ■ 

22 x 10  sec in Case 3* At ranges greater than about r/r « 1.75, the yield 

criterion is no longer satisfied in Case 3 and a., a. become similar to those 
ö  9 

in Cases 1 and 2. 

In Case k,  tensile stresses do not occur anywhere within the range 

considered. Part of the reason for this behavior is the Coulomb yield condi- 

tion which allows plastic deformations to occur at relatively low stress levels 

and large ranges. Also, dilatency or plastic volume increase takes place during 

unloading.  In the range of this problem, outward displacement is not large 

enough to absorb all this dilatency, and so hoop compressive stresses are induced. 
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This effect of dilatency Is further illustrated in Case 5, where 

the Coulomb yield criterion is used but plastic dilatency is not allowed. 

The low yield criterion suppresses tensile stresses at r/r - 1.015, but 

at greater ranges, tensile stresses develop for the same reason as In Cases 1-3, 

o>4 TRAJECTORIES 
r 9 

Plots of o vs ofl, o. further illustrate the influence of the 

yield criterion on the wave shape. Figures 5-6 to 5-8 show o/aata. 
roe 

trajectories at    r/r   - 1.015, 2.00 and 3.00.    Superposed on each figure are 

yield criteria used in Case 3 (von Hises) and Cases 4, 5 (von Kises at 

p < H.5kb; Coulomb elsewhere).    In Cases 1 and 2, the stress path is unre- 

strained by a yield criterion.    The ratio of   a Jo.    is greater in Case 1  than r   6 
in Case 2 because Poisson's ratio in Case 1 is smaller.    In Case 2, Poisson's 

ratio tends toward 0.45 as the bulk modulus    B    tends toward its maximum value of 

7.6 x 10 psi.    This causes the material   in Case 2 to appear more fluid-like 

than in Case 1.    Hence the stress state in Case 2 lies nearer the hydrostat. 

0    -SO -100 -ISO -200 -250 -HO -350 -400 
<?,. 1000 PSI 

6 

FIGURE 5-6. STRESS TRAJECTORIES AT 
r/r - 1.015 o 

26 



V 
-.'- 

AjA 
-M 

CMiMM A \y 1 — tfjc   3 "II — Jit      j! 
U «m   - 
m «MM» 
Bi aimm 

/ ^                            7l 

•14 

iHF^ffi \   WJ 
Jr. 

W i    1      i 
'JA Jfj-   

C    "1 jrr.Tiair. i 

; /f M/ 
ac 

  

- * 

'MMJZ   . 
-4M- -Z- 

// 
1 m 

• JM     ™T_   **w 

f    *<*^ 
0 

k I    1! 0   -1   -2 -3 -4  -5  ■* -1 -    -» -D-l 

R-6813-777 

ce. unopsi 

FIGURE 5-7- STRESS TRAJECTORIES AT r/r   - 2 
o 

3 2 1 0-1-2-3-4 -5 -6 -7 -8 -9 -10 

<J , 1O0OPPSI 
6 

FIGURE 5-8. STRESS TRAJECTORIES AT r/r - 3 
o 

27 



AjA R-6813-777 

The trend which is exhibited in Case 2 also appears in Cases 3, 4, 

and 5« For example, at r/r   ■ 2, the peak stress in all cases lies inside 

the yield surface. Frequently, at greater ranges only the peak or only the 

toe of the stress wave lies on the /leid surface. A major feature of the 

present calculations Is the absence of sustained plastic deformation on loading. 

In contrast, unloading is frequently accompanied by significant 

plastic deformation. The outward displacement which accompanies any compression 

wave caused aa    to unload more rapidly than a  . The result is that the 
9 r 

stress point >n a /oa plane tends away from the hydros tat on the c  side 
r B r 

until it encounters the yield surface. During subsequent plastic unloading, 

a     remains the major principal stress. This behavior is distinctly different 

from the one-dimensional strain case, in which the major principal stress 

during plastic unloading is at some stages perpendicular to the direction of 

waw propagation. 

PI LATENCY AMP T/Y 

Plastic deformation in Case h  is associated with dilatency, or plastic 

volumetric expansion. By far the largest amount of plastic deformation, and 

hence dilatency, takes place during unloading. This is illustrated in Fig- 

ures 5-9 and 5-10 where the P/y curves for Case k are compared with those in 

Case 2 at r/r * 2 and 3« Dilatency causes the unloading P/y curve to lie above 
o 

the loading curve. Thus, during most of the unloading phase, the bulk modulus 

is less than either the loading or the unloading bulk moduli in the absence of 

plasticity. This behavior, in conjunction with inelastic deformation in shear, 

reduces the speed of the unloading wave and therefore contributes to a slower 

rate of attenuation of the peak o  for Case 4 than for other inelastic cases. 

Although the unloading P/y curve is above the loading curve, there 

is net energy dissipation in the material. This is demonstrated in Figures 5*9 

and 5-10, where the areas under the shear stress/strain curves at r/r   » 2 
o 

and 3, representing absorption of inelastic energy, are greater than the areas 

between the loading and unloading P/y curves. 
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GROWTH OF CAVITY 

The amount of cavity expansion is a reflection of the material 

properties and the amount of energy originally available to propagate the 

wave. The displacement of the cavity surface in Cases 1-5 is shown as a 

function of time in Figure 5-11. Plastic deformation in Cases 3"5 is appar- 

ently responsible for the large expansion. One reason that the expansion 

in Case 3 is less than in Cases 4 and 5 is that the yield criterion in Case 3 

permits hoop stresses to tend toward tension whereas the criteria in Cases k 

and 5 maintain compressive hoop stress at the cavity wall. The second reason 

is that mere yielding occurs in Cases 4 and 5 because the yield criteria are 

satisfied at a lower stress level. 

TIM. 10 " SIC 

FIGURE 5-11. DISPLACEMENT OF CAVITY WALL 
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ATTENUATION RATES 

The rate at which peak radial stress attenuates with range is a 

common index of the material properties and wave behavior. The stress at 

the front of a spherically-diverging step wave propagating in an elastic 

material attenuates at a rate proportional to r"  (Reference 16). Inelas- 

ticity may accelerate attenuation by allowing unloading signals to overtake 

the front and by absorbing energy of the wave. 

The interpretation of attenuation rates in the present work is 

complicated since each case has a different amount of energy initially 

available to propagate the wave. This happens because a common pressure/time 

history acts through different displacements of the cavity wall. The amount 

of energy initially available to the wave in each case is shown in Table 5-1. 

TABLE 5-1. ENERGY AVAILABLE TO 

PROPAGATE WAVE 

Case U/U o 
1 1 

2 1.03 

3 1.52 

4 2.61 

5 2.69 
6 8.95 

7 4.25 

0.127 x 106 in.-lb 

The attenuation rates of peak radial stress in Cases 1-5 are  shown 

in Figure 5-12. Comparison between Cases 1 and 2 indicates that adding 

volumetric hysteresis strongly increases the attenuation rate. This is 

because volumetric hysteresis absorbs some of the energy of the wave and 

because the unloading signals travel faster than the loading signals, over- 

taking the peak and degrading it. Interpretation of Case k  is complicated 
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because there is considerably more energy initially available to propagate 

the wave than in Cases 1 and 2,  but the material of Case *♦ is elso much more 

dissipative. The slow attenuation rate of the peak in Case ' appears not 

to be due to the extra energy in the wave, which is primär My associated with 

the portion of the wave behind the peak, but instead to the reduction in 

the speed of unloading signals caused by dilatency. This is due to reduction 

in the effective bulk modulus caused by dllatency as illustrated in Fig- 

ures 5-9a and 5-10a. 

3   4  S 6 7 8 910 

FIGURE 5-12. EFFECT OF MATERIAL PROPERTIES AND 
IMPULSE ON ATTENUATION RATE 
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Further support for the hypothesis that the speed of unloading waves 

dominates attenuation rates comes from comparing the attenuation rates in 

Cases 2, 3, and 5 with that in Case k.    This represents a correlation between 

unloading wave speeds and attenuation rates. There is no such simple cor- 

relation between amount of energy initially in the wave and attenuation rate, 

as comparison among Cases 2, k,  and 5 shews. 

The most dramatic illustration of the effect of volumetric properties 

on attenuation rate is given by Case 4, which differs from Case 5 only in 

having plastic dilatation. At r/r » k,    a      in Case k  is twice as great as 

that in Case 5. 

EFFECT OF PULSE SHAPE ON WAVE PROPERTIES 

To test the hypothesis that the rates of attenuation depend heavily 

on the unloading waves catching up with the peak and to widen the scope of the 

study in general, two calculations were performed using input pulses of longer 

duration. The input pulse used in Cases 6 and 7 is illustrated in Figure 5-lb. 

The peak stress on the cavity wall is the same as in Cases 1 through 5, but the 

peak has a duration of 7 x 10 sec. The shape of the unloading pulse is similar 

to Cases 1 through 5, and the impulse is about two times greater. The material 

properties assumed in Case 6 are the same as those in Case k while those in 

Case 7 are the same as those in Case 2. 

The stress/time histories in Figure 5-5 and the rate of attenu- 

ation plot, Figure 5-13» confirm that lengthening the duration of the peak 

delays degradation of the pulse.  Interpretation of Case 7 Is difficult because 

the peak is associated with a very sharp rise and decay, which is the least 

favorable wave shape for the present method of calculation. Comparison of 

Case 2 with Case 7 suggests that the unloading wave catches up with the peak at 

about r/r - 3-4 in Case 7 and r/r - 1-2 in Case 2. This is confirmed 
o o 

by considering the instant in time at which the unloading wave catches up with 

the front of the loading wave. The maximum speed of unloading waves is 

8 ♦ £ 
- 2_  s t.94 x 105 in./sec 

P 
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SECTION 6 

IMPLICATIONS FOR MATERIAL PROPERTY TESTING 

A mathematical model transforms experimental data from the states of 

stress under which the data were measured to states which occur in calculations. 

Since these states may differ widely, great reliance must be placed on the 

mathematical model to do the transformation correctly. Much of the doubt as 

to the physical meaning of calculations is due to uncertainty about the ability 

of current models to do this. 

The risk involved in using a mathematical model in the present cal- 

culations could be lessened by basing the form of the model and the specific 

material property coefficients on laboratory experiments in which the states 

of stress are close to those encountered in the calculation. One use of the 

present calculations is to guide the planning of laboratory experiments on ■ 

plane or cylindrical samples which support spherical wave field tests. The 

present calculations indicate the following two important areas of concentration. 

a. P/u relation for hydrostatic loading and unloading to indicate 

how the amount of hysteresis varies with u max 

Stress/strain relations for loading programs in which the yield 

criterion and inelastic deformation investigated on unloading. 

See Figure 6-1. 

FIGURE 6-1. PROPOSED LOADING 
PROGRAMS FOR INVESTIGATING 

YIELD CRITERIA AND INELASTIC 
DEFORMATION ON UNLOADING 

AJAI039 

PRECEDING PASE BLANK 
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The purpose of investigating the P/u relation under hydrostatic 

loading is to establish the amount of hysteresis in the absence of dilatancy, 

which is known to develop near the maximum deviatoric stress. Having established 

this, the amount of dilatancy which occurs during inelastic deformation on 

unloading may be investigated. The results will shed light on which of the 

two flow rules investigated in the present study is the more appropriate, and 

whether the yield criterion is the same on unloading as on loading. 

These suggestions are intended to improve the effectiveness of the 

type of mathematical model used in the present calculation. It is possible 

that such experiments would expose the present model as being inadequate or 

misleading for application to spherical wave situation. In this event, it 

would become necessary to investigate new types of models. 

38 



AjA R-6813-777 

SECTION 7 

CONCLUSIONS 

The features of the present mathematical model which most strongly 

affect the results are 

a. The amount of permanent volumetric compaction during hydrostatic 

loading and unloading, 

b. The amount of dilatancy accompanying inelastic deformation, 

c. The yield criterion during unloading. 

Laboratory testing should be concentrated in these areas to support the 

development of a model for use in spherical wave calculation. 

39 
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APPENDIX 

An investigation was made of the effect of rise time on the pulse 

shape and attenuation rate of spherically diverging waves.    The purpose of 

the study was to determine whether the rise time of the prescribed stress or 

velocity boundary condition significantly affects the calculated stress pulse 

at ranges between 1 and 5 times the cavity radius.    For the rise times and 

material properties of interest to the present finite element calculations, 

the study indicates that the true rise time should be represented as accurately 

as possible.    The initial rise time of about 0.67 x 10~    sec, which was 

measured in the Physics International  Company experiments, was chosen as 

being representative of shock waves generated by detonating chemical explosive. 

The finite element mesh size and integration time step were selected so as 

to represent this  initial  rise time as accurately as possible. 

In the first part of the study, use was made of Jeffreys'  solution 

(Reference  17) for a step pressure pulse on the wall of a cavity whose radius 

is    r .    The particle velocity at a range    r    is given by the following 

expression: 

u   -   I   -^-22E[r
0v

/2~  -   yrfr--^)   sinyTe* 2r cos/Fa] exp(-ß)     (A-1) 
Gr      ■■ J 

where      u    ■    Radial particle velocity 

r     *    Cavity radius o 

o 
o 

Range 

Applied radial stress on the cavity wall 

c  = Dili tational wave speed 
P 

G ■ Shear modulus 
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= ct -(r - r ) 
-£ 2- > 0 

Although this solution applies to the case of a step load in a 

cavity, it can be used to obtain an estimate of the solution for a ramp load 

by summing up the effects of many small step toads, as illustrated in 

Figure A-1. Several cases were studied using Jeffreys1 solution. One of 

these was compared with the corresponding finite element solution. 

Case 

Al 

A2 

A3 

Solution Method 

Jeffreys 

Jeffreys Adapted 

Finite Element 

t 

0. 

0.0055 sec 

0.0055 sec 

a.    STt» 10*0 

».    «rmoilMTIO« TO Ml* IMO 

AM10S7 

FIGURE A-1.  INPUT FOR JEFFREYS' SOLUTION 
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The following geometrical, material, and loadirg paaneters are common to all 

three cases. 

P 

G 

-    1.465 x 105 In./sec 

-   2.013 x 10° psi 

r.   -    100 In. 

0.04775 psi 

The velocity time history for each case is obtained at    r/r   - 2.44.    The 
o 

results which are plotted in Figure A-2 are typical of the dramatic effect 

of rise time on the peak particle velocity and pulse shape. 

FINITE ELEMENT V 0.00» SEC 

 JOTREYS' SOLUTION I - 0.00» SEC 

 JffFREYS' SOLUTION I • 0. 

01234    56789    10 
TIME. MSEC WA1M< 

FIGURE A-2.     VELOCITY/TIME HISTORY AT 
r/r_ - 2.44 
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A second study was initiated to study the effect of rise time on 

the shape and attenuation rate of a wave having the same initial shape as 

the one used in the present finite element calculations. This shape Is 

represented in the analysis by a linear rise to a peak pressure followed 

by an exponential decay. Figure A-3 illustrates the shape of the input 

pulse and the geometrical coordinates of the analysis. 

4 
<u. V. W) 

i.  SPHERICAL CAVITY IN ELASTIC MEDIUM 

WWOL 

EQUATION Al? 

b. PRESSURE/TIME HISTORY ON INTERIOR OF CAVITY 

FIGURE A-3. COORDINATES AND PRESSURE/TIME 
HISTORY FOR RAMP LOAD WITH 

EXPONENTIAL DECAY 
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Consider the configuration shown in Figure A-3.    A spherical cavity 

of radius    r      in an  infinite body  initially at rest  is subjected to an 

internal pressure    p(t)    at the boundary    r » r .    Under the assumed condition 

of spherical  symmetry and infinitesimal  displacements,  the response at a 

point    P    at an arbitrary position  (r, 8, i>)   is to be determined.    Due to 

spherical  symmetry,  the components of displacement  in the    8    and    if»    direc- 

tions, v   and   w,  respectively, vanish.    The rerunning response parameters 

are functions of    r   and    t    only.    Since only  infinitesimal  displacements 

are considered,  no distinction need be made between deformed and undeformed 

positions. 

The only nontrivial equation of motion  is that  in the radial 

direction (for a general  theory of elastic wave propagation; see Kolsky, 

Reference 18)  and when expressed in terms of the dilatational  displacement 

potential  function    ty    it becomes simply the one-dimensional  spherical wave 

equation 

T2*    =    3jL+i2±   -    ±-i± 
*    "    3r2      r 3r c2 7? 

P 

(A-2) 

where    i|»   ■    i|»(r,t) 
r   <   r < ■ 
o 

0 < t < * 

and    c      ■   y/(\ + 2y)/p   is the dilatational wave speed and    X, u    are the 

Lame' constants.    The dilatation potential    tj>    is  related to the radial  displace- 

ment    u    by 

3 ti- ll     m     —i. 
3r (A-3) 
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The radial stress    or    and tangential stresses    a  , a     are obtained f rom 

0r   -   (*♦»,>{*♦ I»* .   (x + 2„)l|+^|l 
ar 

•j/i i.   t u * , 3u   =   2(A + u) a» . , a_i 

o r 

All shear stresses are zero as a result of symmetry. 

At the boundary    r ■ r , 

-P(t) 

(A-if) 

or 

(J + 2u,i_i*iifi -p(t) 

r ■ r 

(A-5) 

and with    r -*•<»,  ty    is taken to be zero since the medium far enough away from 

the cavity is undisturbed for finite times. 

The Laplace transform >f    <|»(r,t)     is denoted by 

*(r, - • f •- *(r,t)dt 

Applying this operation to the differential equation (A-2) provides 

dr 
(A-6) 
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where k - p/c . The solution to Equation A-6 is, accordingly, 

}(r>p, . *id«v+£M;kPr 

where A(p), B(p) are arbitrary functions of p. The boundary condition at 

r •*■ • suggests taking B(p) -  0 so that 

(r,p) - ÄJÜ..V (A-7) 

Application of the Laplace transform to Equation A-5 yields 

(X + 2u)4
+f-# " -P(P) (A-8) 

dr 

where P(p) is the Laplace transform of P(t). Equations A-7 and A-8 together 

determine the arbitrary function A(p) and it is found that 

-   -p(r - r )/c 
7/  x     ro P(p e      °  P *(r,p) - - -— -Pfr 

P»  (p + pj)(p + p2) 
(A-9) 

where p1 
■ 2O(1 +  Iß) 

P2 
■ 2a(l - iß) 

a 

ß 

= 
2. 

c IT C sop 

\/(c. /c)2 -  1 

arid    c   ■  yü/p    is the shear wave speed.    A formal  solution to the problem 

is therefore given by the Inverse Laplace transform of Equat'on A-9: 

_        P[l -  (r -  rQ)/c 1 

♦ <r.t>    -     '«fc    /     *V*\ II.....  1 dp (A-10) 5fr Jfi (p + pjip + p,) 
c ] z 
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where C denotes a suitable contour In the complex p-plane. Equation A-9 

can also be written as 

*l tP' pr p2 - p, [P 
+ P,  P ♦ P2J 

-p(r - r )/c 
e      °  p    (A-11) 

which is a more convenient form for the Inversion process. 

Consider the exponential pulse given by 

ÜÜ1 . JL 
Ato 

[H(t) - H(t - AtQ)] 

1  - t/t     N -b (t - At )/t o x^ n o     o 
1 - A n«i 

(A-12) 

[H(t - AtQ)  - H(t -  tQ)] 

where H(t) is the Heaviside step function 

H(t) 
0 If t < 0 

1 if t > 0 

and   N    is any integer.    The pressure pulse given by Equation A-12  is called 

an N-term exponential pressure pulse.    It can be shown that the Laplace trans- 

form of Equation A-12 is 

°o At0p2 
i+-JLT 
P     Atop2 

'At0P 

N 
1 

p+F7t 

+ Tr^7t;Sanr7 

n'\>      (1  - A)t  (p + b/t V o no 

bn(1  - A) n "V 

-Atop 

(p ♦ bn/t0)' 
(A-13) 

50 



Sff-tai 

AjA R-6813-777 

Substituting Equation A-13 into Equation A-l1 and carrying out the inversion 

operation leads finally to 

*(r,t) 
aoo , I  1  (T "p1T 

2aßpr
 m Atopf|Le ♦   P,T   -   1 H(T) 

f-Pl(t-Att ) 

♦ PlCt - At )  - 1|H(T - htj) + 4-{e"Pl(T " ht°] 
'1 <o>  ' ] o I     p - 1 

1 

N a r-bn^-At)/t -P, (* - At)"]) 

[1^|S(p1.bl/t0)a 
-P,(T - AtQ) 

-b  (x - At )/t -b 
+(p,  - bn/tQ)(t - At0) e    " °     °-e 

(x - At )/t 1 
°|H(T - At0) 

t -b (1  - A) 

ne 

""'   '■,-'.".>' 
[.-'■   ' •• ♦ <P,  -bn/t0)(x- tQ) e 

-b.(x - t )/t 

-e-b"('-^olH(T.,o)1 (A-UO 

where      T    ■    T -  (r -  r )/c 
o      p 

Pl    *    2o(1 + iß) 

2. 
s    op 

6   -   yfi 

and    Im    denotes  the imaginary part of a complex function. 

Vv -' 
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Expressions for    u, a , and   c     can be obtained from Equations A-3, 

A-4, and A-14.    The radial  velocity    ü    Is obtained by differentiating    u 

with respect to time  (the lengthy algebra  involved will  not be reproduced 

here).    Note that the radial displacement    u    has terms of the form    (r /r) 

and    (r /r)   , while the radial  velocity    Ü, the radial  stress    a  , and the 
o r' 

tangential strtss ofl have in addition terms of the form (r /r) . The 

response has the general character of a highly damped oscillatory motion 

about the static value.    The damping time constant    T    is given by 

I   -    2aß 

whr.re    a   ■ 
cs/ro 
Cr/Cc 

- Vs 
(c /c )2 

Hence, T is of the order of the half transit time t.. = a/c , i.e., the time 

for a shear disturbance to travel a distance equal to the radius of the cavity. 

Near th>? wave front, the stresses decay like (r /r) with increasing radial 

distances. Behind the front, the decay rate is somewhat higher depending on 

the value of the time after wave front arrival, T, compared to T. The limit, 

of course, is (r /r)  for the static case. Therefore, the peak response 

depends not only on the peak input (as in all linear systems) but also on how 

soon the peak is attained.  In other words, if the input pulse reaches its 

peak in a time smaller than the characteristic damping time T, the response 

peaks are expected to scale according to (r/r )  .  If the input peak is 

not reached until after several multiples of T, however, the response peaks 

are expected to scale according to (r/r )  . This observation is verified 

by the results obtained for the specific examples considered below. 

Numerical results are obtained for the exponential input pulses 

defined by the fnllowinn parameters. 
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a1 
■ 0.65 

a2 - 0.35 

b1 
V 10 

b2 
■ 0.1 

po 
m -475.000 psi 

t o 
8 kO x 10-6 sec 

t ■ At 
p    o 

0. 

0.6667 x 10-6 sec 

Case 

B1 

B2 

P3 2.0 x 10"6 sec 

Bl» 5.0 x 10"6 sec 

These parameters describe pressure time histories on the surface of the cavity 

which cover the range observed in the present finite element calculations. 

Although the input pulse in all the finite element calculations has an initial 

rise time of 0.6667 x 10  sec  (Case B2), the rise time lengthens to 

2.0 x 10" to 3.0 x 10"  at r/r = k  to 5. This lengthening is due to 

numerical distortion of the pulse which evidently cannot be entirely elimi- 

nated in spite of using small mesh size and integration time step. Thus, 

Cases B' through 64 bound the possible effects on pulse shape and attenuation 

rate which can be attributed to rise time in the present elastic finite 

element calculations. 

The medium surrounding the cavity has the same properties as the 

medium in Case 1 of the finite element calculations. These are 

B «■ B  « 1.205 x 10 psi 

G - 1.000 x 106 psi 

P * 0.000238 lb-sec2/^.1* 
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The p- and s-wave speeds in the material are 

c  - 8590 ft/sec 
P 

c  - 5400 ft/sec 

The cavity is assumed to have an initial radius r ■ 1 in. 
o 

The responses in the four cases are shown at r/r = 1, 2, 3, and 4 

in Figures A-4 and A-5. The computer program which was used to calculate the 

response automatically defines the arrival time at each station to be zero. 

Hence, the response at all four ranges of a given case appear to start at 

zero, whereas in a physical problem each would have different times of arrival. 

Except in Case B4, when the portion of the a /t history prior to 

the peak is slightly nonlinear, there is no noticeable distortion of the pulse 

due to the various rise time studied. The rates of attenuation, which are 

shown in Figure A-6, differ appreciably due to the different rise times. For 

example, at r/r   • 4, a  /u  in Case B1 is 1.45 times that in Case B4. This 
o     r o 

effect is considered to be too big to be ignored, and hence, care was used 

In representing rise times in the finite element calculations. 

An estimate cf the numerical error present in the finite element 

calculations is indicated by comparing the attenuation rate found in Case 1 

with the rates of attenuation found in the closed form solutions. 

The formal integral solution is obtained for spherical waves propagating 

from a spherical cavity subjected to a pressure pulse with finite rise time 

and exponential decay. The rate of attenuation of the peak stress when it 

propagates into the medium depends on the magnitude of the rise time relative 

to the transit tiiiie r /c , where r  is the radius of the cavity and c 
o s       o '     s 

is the shear wave speed. For zero rise time, the attenuation rate is propor- 

tional to r , whereas for rise times much greater than r /c  the attenuation 
-3 ° s 

rate lr proportional to r . 
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FIGURE A-6. EFFECT OF RISE TIME ON ATTENUATION RATE 
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